

Trimethyltin fluoride: A new fluorinating reagent for the preparation of silicon fluorides ¹

Herbert W. Roesky *, Klaus Keller

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany

Received 22 April 1996; accepted 24 October 1997

Abstract

A new fluorinating reagent for the preparation of silicon fluorides is described. The preparation of Me_2SiF_2 , $(CH_2=CH)MeSiF_3$, $EtSiF_3$, $CH_2=CHSiF_3$, n-PrSiF₃, n-PrSiF₃, n-HexSiF₃(Hex = C_6H_{13}) and PhSiF₃ using Me_3SnF is reported. The products are formed in high yield. The resulting Me_3SnCl can be easily recovered and again converted to the fluorinating reagent.

Keywords: Fluorinating reagent; Silicon fluorides: Recycling

1. Introduction

Silicon fluorides are a well established class of compounds and numerous reviews can be found in the literature. A most recent compilation appeared in the Gmelin handbook containing SiF compounds and their appropriate references [1,2]. Recently, we reported in a short note on the preparation of SiF₄ and Me₃SiF using Me₃SnF 1 as a fluorinating reagent [3]. An almost quantitative conversion was observed. Moreover, Me₃SnF turned out to be an efficient reagent for the preparation of organometallic fluorides [4]. Herein, we report on the preparation of several di- and trifluorides of silicon.

Table 1 Numbering scheme, yields, and physical data of compounds 2–8

Reactant	Product	Compound no.	Yield (%)	hp (°C)	MS (EI)	19 F NMR $\delta(C_6D_6)$ ppm"	J(F-Si) (Hz)
Me ₂ SiCl ₂	Me ₂ SiF ₂ [8]	2	97	2	96	32.55	289.6
$(CH_2=CH)MeSiCl_2$	$(CH_2=CH)MeSiF_2$	3	97	24	108	25.93	286.7
EtSiCl ₃	EtSiF ₃ [9]	4	96	-4	114	22.27	283.7
CH ₂ =CHSiCl ₃	CH ₂ =CHSiF ₃ [10]	5	94	-10	112	20.35	263.2
n-PrSiCl ₃	n-PrSiF ₃ [1,2,9]	6	94	25	128	24.86	285.0
ı-HexSiCl ₃	n-HexSiF ₃ [1,2]	7	88	92	170	25.59	286.0
PhSiCl ₃	PhSiF ₃ [1,2,11]	8	86	101	162	21.85	268.0

^aExternal standard C₆F₆.

2. Results and discussion

Me₃SnF (1) has been known since 1918 [5–7] and has a polymeric structure containing Sn–F–Sn intermolecular bonds. It is easily prepared from the corresponding chloride using NaF in aqueous solution. Prior to use 1 should be thoroughly dried in vacuo. Otherwise oxofluorides are formed as by-products in the reaction mixture.

The difluorides Me₂SiF₂ (**2**) and (CH₂=CH)MeSiF₂ (**3**) have been prepared without using any solvents. The products are recovered by trap-to-trap distillation. The yields are almost quantitative (see Table 1). The trifluorides EtSiF₃ (**4**), CH₂=CHSiF₃ (**5**), *n*-PrSiF₃ (**6**), *n*-HexSiF₃ (**7**) and PhSiF₃ (**8**) are formed in high yields using the corresponding chlorides and Me₃SnF in a molar ratio of 1:3. The nonoptimized yields vary between 86% and 96%. Only in the case of

^{*} Corresponding author.

¹ Dedicated to Professor K. Kühlein on the occasion of his 60th birthday.

PhSiF₃ was a small amount of nonvolatile solvent added for a smooth reaction.

The compounds have been characterized by EI (electron ionisation) mass spectroscopy and $^{19}\mathrm{F}$ NMR spectroscopy. Compounds **2–8** exhibit their molecular ions as the highest mass peak (see Table 1). The $^{19}\mathrm{F}$ NMR chemical shifts are in the range of 20–32 ppm using C_6F_6 as an external standard.

These few experiments demonstrate that almost all organometallic halides of silicon may be converted to the corresponding fluorides using Me₃SnF or any other R₃SnF compound as a fluorinating reagent.

3. Experimental section

All experiments were performed under a dry nitrogen atmosphere using a glass reactor equipped with a Teflon valve. Me₃SnF was synthesized by published methods [5–7] and sublimed at 100°C/10⁻⁴ mbar prior to use. The organometallic silicon chlorides were obtained from Aldrich, ABCR, Fluka and Janssen Chimica.

 $^{19}\mathrm{F}$ NMR spectra were recorded by means of a Bruker AM 250 instrument using TMS and C_6F_6 as external standards. Mass spectroscopic analyses were performed with a Finnigan MAT 8230 instrument. IR spectra were recorded in the gas phase using a BIO-RAD FTS-7 instrument.

4. Preparations

Me₂SiF₂ (**2**): 3.84 g (21 mmol) Me₃SnF were placed in a 30-ml reactor. After evacuation of the reactor on a vacuum line, 1.29 g (10 mmol) of Me₂SiCl₂ were condensed onto the Me₃SnF under cooling with liquid nitrogen. The reactor was slowly warmed to room temperature, kept at this temperature for 30 min, and the resulting product **2** purified by trap-to-trap distillation. Yield 0.9 g (97%). IR 2984, 1273, 947, 913, 827, 816, 331 cm⁻¹.

 $(CH_2=CH)MeSiF_2$: (3) 3.84 g (21 mmol) Me₃SnF and 1.41 g (10 mmol) $(CH_2=CH)MeSiCl_2$ were reacted as described for **2**. Yield 1.05 g (97%) of **3**. IR 2985, 1604, 1415, 1276, 1015, 935, 888, 811, 629, 403, 318 cm⁻¹.

EtSiF₃ (4): 5.7 g (31 mmol) of Me₃SnF were reacted with 1.64 g (10 mmol) of EtSiCl₃ to yield 1.1 g (96%) of 4. IR 2985, 1265, 993, 955, 890, 877, 420, 389, 355 cm⁻¹.

 CH_2 = $CHSiF_3$ (5): 5.7 g (31 mmol) Me_3SnF and 1.61 g (10 mmol) CH_2 = $CHSiCl_3$ were reacted to yield 1.05 g

(94%) of **5**. IR 2985, 1610, 1420, 1006, 958, 880, 542, 424, 359 cm⁻¹.

n-PrSiF₃ (**6**): To 5.7 g (31 mmol) Me₃SnF were added 1.77 g (10 mmol) n-PrSiCl₃ using a syringe. 1.2 g (94%) of **6** were obtained after distillation. IR 2973, 1468, 1227, 1069, 1021, 947, 905, 872, 439, 367, 330 cm⁻¹.

n-HexSiF₃ (7): 5.7 g (31 mmol) of Me₃SnF were placed in a 30-ml reactor cooled with liquid nitrogen under an atmosphere of dry nitrogen and finally 2.2 g (10 mmol) of *n*-HexSiCl₃ were added using a syringe. The reactor is closed and slowly warmed to 50°C, and kept at this temperature for 30 min. After cooling to room temperature and trap-to-trap distillation, 1.5 g (88%) of 7 were obtained. IR 2971, 2940, 1199, 1029, 971, 890, 734, 481, 428, 389 cm⁻⁺.

PhSiF₃ (**8**): 5.7 g (31 mmol) of Me₃SnF and methylnaphthalin (5 ml) were placed in a reactor, which was then cooled with liquid nitrogen, and 2.11 g (10 mmol) of PhSiCl₃ were added. 1.4 g (86%) of **8** were obtained after trap-to-trap distillation. IR 3083, 1598, 1434, 1140, 949, 854, 784, 741, 696 cm⁻¹.

Recycling of Me₃SnF: After removal of the products the residue containing Me₃SnCl and a small amount of Me₃SnF is treated with water. Me₃SnF is not dissolved and separated by filtration. The resulting solution is treated with excess of a 15% solution of KF. Immediately Me₃SnF precipitates and is recovered by filtration and washed three times with water. Both quantities of Me₃SnF are combined, dried and finally sublimed in vacuo.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft, and the BMBF for financial support.

References

- [1] Gmelin Handbook of Inorganic and Organometallic Chemistry, Silicon, B7, Springer-Verlag, Berlin, 1992.
- [2] Gmelin Handbook of Inorganic and Organometallic Chemistry, Silicon, B7, Part C, Springer-Verlag, Berlin, 1958.
- [3] H.W. Roesky, A. Herzog, K. Keller, Z. Naturforsch. 496 (1994) 981.
- [4] A. Herzog, F.-Q. Liu, H.W. Roesky, A. Demsar, K. Keller, M. Noltemeyer, F. Pauer, Organometallics 13 (1994) 1251.
- [5] W.K. Johnson, J. Org. Chem. 25 (1960) 2253.
- [6] L.E. Levchuk, J.R. Sams, F. Aubke, Inorg. Chem. 11 (1972) 43.
- [7] E. Krause, Ber. Dtsch. Chem. Ges. 51 (1918) 1447.
- [8] H.S. Booth, J.F. Suttle, J. Am. Chem. Soc. 68 (1946) 2658.
- [9] H.S. Booth, P.H. Carnell, J. Am. Chem. Soc. 68 (1946) 2650.
- [10] Y.-R. Luo, J.L. Holmes, J. Phys. Org. Chem. 7 (1994) 403.
- [11] H.J. Emeleus, C.J. Wilkins, J. Chem. Soc. (1944) 454.